Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Environ Res Public Health ; 19(23)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2143166

ABSTRACT

BACKGROUND: Nurses face the risk of new onset occupational asthma (OA) due to exposures to cleaning and disinfection (C&D) agents used to prevent infections in healthcare facilities. The objective of this study was to measure nurses' preferences when presented with simultaneous OA and respiratory viral infection (e.g., COVID-19) risks related to increased/decreased C&D activities. METHODS: Nurses working in healthcare for ≥1 year and without physician-diagnosed asthma were recruited for an online anonymous survey, including four risk-risk tradeoff scenarios between OA and respiratory infection with subsequent recovery (Infect and Recovery) or subsequent death (Infect and Death). Nurses were presented with baseline risks at hypothetical "Hospital 1", and were asked to choose Hospital 2 (increased OA risk to maintain infection risk), Hospital 3 (increased infection risk to maintain OA risk), or indicate that they were equally happy. RESULTS: Over 70% of nurses were willing to increase infection risk to maintain baseline OA risk if they were confident they would recover from the infection. However, even when the risk of infection leading to death was much lower than OA, most nurses were not willing to accept a larger (but still small) risk of death to avoid doubling their OA risk. Age, work experience, and ever having contracted or knowing anyone who has contracted a respiratory viral infection at work influenced choices. CONCLUSIONS: We demonstrate the novel application of a risk-risk tradeoff framework to address an occupational health issue. However, more data are needed to test the generalizability of the risk preferences found in this specific risk-risk tradeoff context.


Subject(s)
Asthma, Occupational , COVID-19 , Occupational Diseases , Occupational Exposure , Occupational Health , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Occupational Diseases/diagnosis , Disease Susceptibility
2.
Environ Res ; 212(Pt A): 113240, 2022 09.
Article in English | MEDLINE | ID: covidwho-1773299

ABSTRACT

The COVID-19 pandemic has resulted in an extraordinary incidence of morbidity and mortality, with almost 6 million deaths worldwide at the time of this writing (https://covid19.who.int/). There has been a pressing need for research that would shed light on factors - especially modifiable factors - that could reduce risks to human health. At least several hundred studies addressing the complex relationships among transmission of SARS-CoV-2, air pollution, and human health have been published. However, these investigations are limited by available and consistent data. The project goal was to seek input into opportunities to improve and fund exposure research on the confluence of air pollution and infectious agents such as SARS-CoV-2. Thirty-two scientists with expertise in exposure science, epidemiology, risk assessment, infectious diseases, and/or air pollution responded to the outreach for information. Most of the respondents expressed value in developing a set of common definitions regarding the extent and type of public health lockdown. Traffic and smoking ranked high as important sources of air pollution warranting source-specific research (in contrast with assessing overall ambient level exposures). Numerous important socioeconomic factors were also identified. Participants offered a wide array of inputs on what they considered to be essential studies to improve our understanding of exposures. These ranged from detailed mechanistic studies to improved air quality monitoring studies and prospective cohort studies. Overall, many respondents indicated that these issues require more research and better study design. As an exercise to solicit opinions, important concepts were brought forth that provide opportunities for scientific collaboration and for consideration for funding prioritization. Further conversations on these concepts are needed to advance our thinking on how to design research that moves us past the documented limitations in the current body of research and prepares us for the next pandemic.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , COVID-19/epidemiology , Communicable Disease Control , Environmental Exposure/analysis , Humans , Pandemics , Particulate Matter , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL